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Abstract-A differential Reynolds stress and heat flux closure is adopted for modelling the turbulent 
transport of heat and momentum in vertical buoyant free plumes. Modelled transport equations are solved 
for the turbulent stresses and heat fluxes, the turbulence energy dissipation rate, and the mean-square 
temperature fluctuations. Closure at this level permits the turbulent transport processes to be treated more 
exactly than with Boussinesq-type two-equation models which are based on the notion of an effective 
viscosity and diffusivity. The solution of a transport equation for the thermal dissipation rate, which avoids 
the need to empirically prescribe the ratio of the thermal and mechanical time scales, is also investigated. 
The model is applied to the calculation of both self-similar plumes and forced plumes. The results are 
compared with existing experimental data and are found to be in reasonable agreement with the measured 

behaviour. 

1. INTRODUCTION 

TURBULENT plumes, such as those that occur in engin- 
eering practice exemplified by the flow from smoke 
stacks, cooling towers and submerged waste-disposal 
systems, are often buoyant : their mean-flow features 
and turbulence structure being strongly modified by 
the gravitational field. The prediction of such flows 
has in most cases utilized turbulence models based on 
the notions of isotropic eddy viscosity and constant 
turbulent Prandtl number, both assumptions unsup- 
ported by experiment. It is not surprising, therefore, 
that these models, while yielding acceptable results for 
simple non-buoyant shear flows, fail to reproduce the 
effects of buoyancy unless modified quite severely in 
some respect. One popular route for improving the 
performance of standard eddy-viscosity models for 
buoyancy has been to use them in conjunction with 
algebraic stress/flux models (ASM) that are capable 
of reproducing the observed anisotropy of the tur- 
bulence field wrought by buoyancy. Such models are 
derived by simplifying transport equations for the 
individual turbulent stresses and fluxes such that they 
reduce to algebraic expressions for these correlations. 
Successful predictions of turbulent plumes based on 
this approach have been reported by several workers 
[l-3]. 

Although ASMs have proved to be fairly successful 
at simulating turbulent plumes, the adoption of such 
a closure means that the transport of the turbulent 
stresses and heat fluxes is treated fairly simply, and as 
a consequence, such models have been found unsuit- 
able [3,4] for situations too far removed from equi- 

librium, as for examp!e in strongly-stratified flows. 
For general elliptic flows, the ASM expressions are 
also rather complex and difficult to implement in 
numerical procedures, and so the advantages over 
full-transport models are lessened or even negated. 
The alternative and more direct approach to mod- 
elling the turbulence in buoyancy-affected shear flows 
is to obtain the unknown Reynolds stresses and heat 
fluxes from the solution of the original modelled 
differential transport equations [5-71. Such a model 
now takes direct account of the transport and history 
effects on these individual stress and flux components, 
and thus is able to simulate the physical processes more 
realistically. This approach seems to be more generally 
applicable for modelling the more complex buoyant 
flows associated with engineering and environmental 
applications. While the ultimate objective is to have a 
model applicable to the calculation of such practical 
flows, the simple vertical buoyant plumes considered 
in this study provide an essential basic test of the 
modelling procedures. 

The Reynolds-stress and heat-flux transport model 
of Launder et al. [Z-7] has given reasonably good 
results for vertical jets and plumes [8,9], although 
it has been found that the plane wall jet cannot be 
simulated accurately with the standard set of model 
coefficients [9]. This basic model which employs the 
simplest of the pressure-strain models suggested in 
ref. [5], also fails to predict correctly the development 
of swirling jets and curved flows that are independent 
of the coordinate system. Calculations with the more 
complex expression for the pressure-strain fared no 
better, and in fact proved even less satisfactory than 
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NOMENCLATURE 

empirical constants in the turbulence 
model 
source dimension 
wall-damping function 
densimetric Froude number 
gravitational acceleration 
component i of the gravitation vector 
buoyancy production of uiuj 
production of Uif due to buoyancy 
exponent : 0, for plane flows ; 1, for 
axisymmetric flows 
turbulent kinetic energy 
static pressure 
stress production of uiuj - 
production of u,t’ due to mean- 
temperature gradients - 
production of uit’ due to mean-velocity 
gradients 
production rate of p 
time-scale ratio 
mean temperature 
temperature excess 
fluctuating temperature 
mean-square temperature fluctuations 
streamwise turbulent normal stress 
Reynolds stresses 
Reynolds heat fluxes 
streamwise turbulent heat flux 
cross-stream turbulent shear stress 
streamwise velocity in the x-direction 
maximum value of U velocity 
mean velocity in the x,-direction 
cross-stream turbulent normal stress 

ct’ cross-stream turbulent heat flux 
I;I transverse or circumferential turbulent 

normal stress 

xi spatial coordinate in the i-direction 
X streamwise coordinate. 

Y cross-stream coordinate 

Greek symbols 

B coefficient of volumetric expansion 

dij Kronecker delta 

6” velocity half-width 

6, temperature half-width 
E dissipation rate of k 

6 dissipation rate of isi 

nij pressure redistribution of I(& 

nit pressure redistribution of u,t’ 

L 

fluid density 
density defect 

CT’S empirical diffusion coefficients in 
turbulence model. 

Superscripts 
I fluctuating quantities 
_ mean quantities. 

Subscripts 

i, i spatial coordinates 
m maximum value 
r reference value at local ambient 

conditions 
0 source condition 
00 ambient condition. 

J 

the simpler model. Significant improvements for all 
of these cases may be effected by adopting the choice 
of model coefficients recommended by Gibson and 
Younis [lO-131. Moreover, the ability of the model to 
predict the development of simple shear flows remains 
unaffected. It is unnecessary to repeat here in detail 
the basis for this new set of model constants, but it is 
useful to point out that the constants are adjusted to 
give relatively less weight to the mean-strain part of 
the pressure-strain correlation, and more to the tur- 
bulent part. Consequently, the mean-strain part is 
reduced from levels indicated by rapid distortion 
theory, and the turbulent part is adjusted to conform 
with the measured rates of return to isotropy. It is 
found that the use of these new constants gives very 
good results for the plane wall jet [14], which is in fact 
a limiting case for the vertical bounded wall plume. 

The objective of the present work is to extend the 
closure model of Gibson and Younis [IO-131 to buoy- 
ant flows and to assess the performance of the com- 
plete Reynolds-stress and heat-flux transport model 

for free turbulent jets and plumes. A further novelty 
of the present contribution is that the dissipation rate 
of temperature variance may be obtained from a solu- 
tion of its modelled transport equation [ 15,161 rather 
than from an empirically-prescribed time-scale ratio 
as in previous studies of turbulent buoyant plumes. 

2. THE MATHEMATICAL MODEL 

2.1. Mean j?ow equations 
The time-averaged equations for steady high 

Reynolds-number incompressible buoyant flow are 
written in Cartesian-tensor form, as follows : 

W,),i = 0 

(p”jui).j = -p.i-(puiuj).j+ @-pr)Si 

(JICJ~T),~ = -(p~~t’).~ 

P = p,TrIT 

(1) 

(2) 

(3) 

(4) 
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wherein uiui and 9 are, respectively, the unknown wherein the volumetric coefficient of expansion is 

Reynolds stresses and heat fluxes. defined by /I = - (ap/aZ’),,/p. 

2.2. The turbulence model 
The numerical solution of the above set of mean- 

flow equations is achieved by introducing additional 
transport equations for uiuj and Q. These equations 
contain higher-order correlations which must be 
approximated by model assumptions in order to close 
the system of equations. These higher-order cor- 
relations represent the processes of diffusive trans- 
port, viscous dissipation, and fluctuating pressure- 
velocity and pressure-temperature interactions. 

The ‘pressure-strain’ term rrij acts to redistribute 
energy among the various components and to reduce 
shear stresses. The term is modelled as the sum of 
three contributions 

Rij = llijl +nij2+KijJ (8) 

the separate elements being associated respectively 
with purely turbulence interactions, interactions 
between mean strain and fluctuating velocities, and 
buoyancy forces. These three contributions are mod- 
elled as follows : 

The model assumptions adopted in this study have 
appeared in detail elsewhere in the literature [S-7, lO- 
13, 15, 161 and so only the main features are provided 
here. In summary, the present Reynolds stress and 
heat flux closure makes use of the linear retum-to- 
isotropy approximation and the isotropization-of- 
production (IP) model for the pressure-strain terms, 
similar models for the pressure-temperature-gradient 
correlations, simple gradient-diffusion models for the 
diffusive transport, and the local isotropy assumption 
for viscous dissipation. The gradient-diffusion and 
local-isotropy assumptions are appropriate for the 
flows considered here, but it is understood that for 
more complex buoyant flows, the direct effect of buoy- 
ancy on these processes may have to be included, as 
done, for example, by Zeman and Lumley [ 171 for the 
diffusive transport. 

Fjl = -c, $ij-:a,k, (9) 

%jZ = -c2(pij-i6ijpkk) (10) 

nij3 = -c3(Gij - $I,G& (11) 

where (c,, c2, cl) = (3.0,0.3,0.3) as recommended by 
GibsonandYounis [lO-131. Rotta’s [19] linear retum- 
to-isotropy model has been adopted for nij,, while the 
IP models of Launder et al. [S-7] have been used for 
nij2 and nij3. 

2.2.2. Turbulent heat fluxes. The turbulent heat 
fluxes are obtained from the following modelled trans- 
port equation : 

The complete turbulence closure model is now out- 
lined in the following sections. 

2.2.1. Reynolh stresses. The Reynolds stresses are 
obtained from the following modelled transport equa- 
tion : 

+p(Pij+G,j+llij-:8UE) (5) 

wherein c, is an empirical constant which is assigned 
a value of 0.22 [lO-131. The five terms appearing on 
the right-hand side of equation (S) denote respec- 
tively: diffusive transport; stress production due to 
mean shear and buoyancy; redistributive action of the 
pressure-strain correlations ; and direct dissipation by 
viscous action. The turbulent stress diffusion process 
has been approximated by the gradient-diffusion 
model of Daly and Harlow [18], while local isotropy 
has been assumed for the dissipative correlations. 
Consequently, the dissipation term is zero for shear 
stresses, and for the normal stresses the same amount 
of energy is dissipated in each component of the tur- 
bulent kinetic energy. 

+ PV,,. I + Pi,,2 + Gi, + T,) ( 12) 

where the constant c, is taken equal to 0.15 [8,9]. 
The five terms appearing on the right-hand side of 
equation (12) denote respectively : diffusive transport ; 
production due to mean-temperature gradients ; pro- 
duction due to mean-velocity gradients ; production 
due to buoyancy ; and the action of the pressure- 
temperature-gradient correlations. The viscous destruc- 
tion term has been neglected by invoking the local 
isotropy assumption for high turbulent Reynolds 
numbers ; and a gradient-type model has been 
adopted for the turbulent-heat-flux diffusion process. 

The production terms which require no approxi- 
mation are defined by 

Pi,. I = -u,u,T, (13) 

pi,2 = -utr;& (14) 

G, = - /!Jg,F (1% 

where F is the mean square of the temperature fluc- 
tuations. 

The production terms P,, and G, need no approxi- 
mation and are defined by 

The pressure-temperature-gradient correlation xi, 
is the counterpart of the pressure-strain term in the 
uil(i equation and generally, it acts to reduce I-$. It is 
modelled as the sum of three terms 

- 
Pij = - (uiu,,U,., + UjUJJi~) 

G, = -/.I(giujt’+gju,t3 

(6) 

(7) 

xi, = %,I +%2+%3 (16) 

the separate components being associated respectively 
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with purely turbulence interactions, interactions 
between mean strain and fluctuating quantities, and 
buoyancy forces. These three contributions are mod- 
elled as follows : 

(17) 

G2 = -C?I P Il.2 (18) 

%3 = - c,tG,, (1% 

wherein (c ,<,c~,, c~,) = (2.85,0.55,0.5S). Following 
Launder [6], these empirical coefficients have been 
estimated by reference to homogeneous shear-flow 
data on the streamwise and cross-stream heat fluxes. 
The model for xi,, is that of Monin [20] which can be 
seen to be a counterpart of Rotta’s ‘return-to-iso- 
tropy’ approximation (9) for the pressure-strain term 
n,,,. The models adopted for nit2 and rri,3 are those 
proposed by Launder [6] in analogy to the pressure- 
strain models (10) and (I 1). 

2.2.3. Turbulence energy dissipation rate. The tur- 
bulence energy dissipation rate E is computed from the 
following modelled transport equation : 

(PUk4.k = c, 

+p ; :(Cdkk+%Gkk --2C2z4 (20) 

where (c,, cl_ ct) = (0.15,1.4,1.8) as recommended 
by Gibson and Younis [lO-131. The first term on the 
right-hand side of this equation represents diffusive 
transport by the turbulent motion. The remaining 
terms model the difference between the production 
and destruction terms appearing in the exact transport 
equation for the dissipation rate. 

Buoyancy effects enter in equation (20) through the 
buoyancy production term Gkk, and the value of the 
empirical constant ck has been given a value of 0.98 
so as to yield satisfactory results for the free line 
plume. This value agrees closely with that used in 
previous applications of stress transport closures [S, 
9, 211, and contrasts with the experience of algebraic 
stress models [2] which return good results with 

c3, = ClC. This very different behaviour of the 
algebraic and differential stress closures has been com- 
mented upon by other workers [8,21]. Although a 
single value for cjs and clc is desirable, there is, 
however, no reason to expect that the modelled 
sources of .s associated with mean shear and buoyancy 
should appear in the E-equation with the same 
coefficient. In fact, it is widely known that a value of 
c3, close to zero is appropriate for horizontal surface 
jets with stable stratification [4]. 

2.2.4. Temperature fluctuations. The temperature 
fluctuations ? are computed from the following mod- 
elled transport equation : 

(pC;t -).; = 7 c~(p~~~,,)~+p(P,-2~,) (21) 

where the constant c,, is taken as 0. I I [S, 91. This equa- 
tion is required for closure in buoyant flows because 
the temperature variance appears in the buoyancy - 
production term (15) of the u,t’ equation. The three 
terms appearing on the right-hand side of equation 
(21) represent respectively : diffusive transport ; pro- 
duction due to mean-temperature gradients; and dis- 
sipation due to molecular action in the fine-scale 
motions. 

The production rate of t” which requires no 
approximation is given by 

P, = -2qt’T,, (22) 

and the dissipation rate E, of the temperature tluc- 
tuations is determined either from its own modelled 
transport equation [ 1.5, 161, or by assuming a constant 
ratio of the thermal and mechanical time scales 

T;r& 
El = 2kR (23) 

where R is the time scale ratio which is assigned a 
value of 0.56 [3,9], rather than the commonly-used 
value of 0.8 [2.4,6, 71. This assignment agrees closely 
with that employed by other workers [S] for similar 
flows, and follows from the original work of Spalding 
[22] who found that this value predicts correctly the 
level of concentration fluctuations in non-buoyant 
jets. The value of 0.8 is supported by data on stably- 
stratified free shear flows [23]. 

2.2.5. Dissipation rate of temperature fluctuations. 
There is enough evidence [23] to show that R is not 
sufficiently constant for equation (23) to serve as a 
general method of finding E,, and so several workers 
have advocated the use of a modelled transport equa- 
tion for determining this quantity. Strictly speaking, 
the original transport models of Launder. Lumley and 
co-workers [17. 24, 251 are not applicable to flows 
with mean strain, and so in subsequent work Jones 
and Musonge [ 15, 161 extended these formulations by 
introducing a term involving the production rate of 
turbulent kinetic energy. The resulting transport 
model was then applied to calculate successfully a 
number of self-similar turbulent shear flows. This 
model of Jones and Musonge [15,16] is used in the 
present study, and it takes the form 

E,? E&I 
---cell=% -cu2-- k ) 

(24) 
t - 

where (L G,,. czt2, czlj, c.,‘,) = (0.09, 2.0,0.8,0.5, 1.4). 
The majority of these constants are taken from Jones 
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and Musonge [l&16], although c,,, and csr4 have 
been adjusted slightly to conform with the values of 
clr and C~ recommended by Gibson and Younis [IO- 
131. The five tetms appearing on the right-hand side 
of equation (24) represent respectively : diffusive 
transport ; production due to mean-temperature 
gradients ; production due to mean shear ; dissipation 
dependent on the thermal time scale; and dissipation 
dependent on the mechanical time scale. There is no 
direct buoyancy influence on E,, as the exact equation 
for this quantity does not involve any buoyancy terms. 

2.3. Boundary conditions 
For all the cases considered, the flow is symmetrical 

about the flow axis, and a zero-flux boundary con- 
dition is employed along the symmetry plane for all - 
variables excepting the cross-stream shear stress uu 
and heat flux z, which are both set to zero. At 
free-stream boundaries, a fixed-pressure condition is 
applied, and the streamwise velocities and tem- 
peratures are set equal to their ambient values, and 
zero values are prescribed for all turbulent quantities. 
The calculations start from the inlet plane which is 
located at the source of the plume or jet. At this 
location the distribution of all dependent variables 
must be specified before the calculation can start. For 
self-similar jets and plumes, the calculations are 
started with arbitrary inlet profiles, which is per- 
missible because only the similarity solution is of inter- 
est in the present work. The inlet values employed for 
non-similar flows are given in Section 4. 

3. SOLUTION OF THE EQUATIONS 

The mean flow and turbulence model equations are 
parabolized in the main flow direction and solved 
numerically with the parabolic finite-volume pro- 
cedure embodied in the PHOENICS computer pro- 
gram [26]. The solution is obtained as a marching 
integration in the x-direction, starting from prescribed 
values of all dependent variables at the source. Typ- 
ically, the calculations utilize 40-50 cross-stream grid 
cells and a forward step size ranging between 2 and 
5% of the local width of the shear layer. 

The complete stress-flux transport model was 
introduced by utilizing the facilities provided by 
PHOENICS for the attachment of user-generated 
coding sequences. The most important features of 
this implementation were to stagger the location of 
the shear stress and heat flux relative to the mean- 
field nodes, to eliminate turbulent diffusive transport 
in the mean-field equations, and to introduce stress 
and heat-flux terms as sources into these equations. 

It should be mentioned that the parabolic approxi- 
mation brings with it the neglect of streamwise deriva- 
tives involving the vertical turbulent heat flux, namely 
-a/ax@>) in the mean-temperature equation, and 
-2~2 CT/ax in the source of temperature fluc- 
tuations. Other workers [l, 81 have argued for the 
inclusion of these terms on the ground that they give, 

respectively, non-negligible contributions to the total 
heat flux and the production of temperature fluc- 
tuations. Nevertheless, previous calculations with 
these approximations have yielded sufficiently accur- 
ate predictions of plume flows [2, 3, 91. 

4. RESULTS AND DISCUSSION 

The model implementation was validated against a 
number of well-documented non-buoyant turbulent 
shear flows including the flat plate boundary layer, 
the plane and axisymmetric free jet and the plane wall 
jet. The results for the free jets are presented here 
in view of their importance as limiting cases for the 
calculation of free buoyant plumes. 

It is the purpose of this section to show how the 
model is capable of simulating self-similar free jets 
and plumes, and also the more general case of a forced 
plume. For each case, a set of experimental data is 
selected as a basis of comparison, and the closure 
model is then applied so as to simulate these data. 
Similarity and scaling laws [3, 30, 311 are used to 
present the results in dimensionless form. These laws 
lead to certain expectations on the behaviour of tur- 
bulent jets and plumes, and are therefore useful for 
assessing the reliability of both prediction and exper- 
iment. The concept of similarity also allows data 
obtained in different experiments to be used together 
for model evaluation purposes, with the proviso, of 
course, that the measurements evidence the expected 
similarity behaviour. 

4.1. Self-similar turbulent jets 
In this section, the flows considered are heated 

axisymmetric (round) and plane jets exhausting into 
stagnant surroundings from a source of momentum 
with negligible buoyancy. The computed and mea- 
sured similarity profiles of both mean-flow and tur- 
bulent quantities are shown in Figs. l-4. Figures 1 
and 2 present results for the plane jet, while Figs. 3 and 
4 show results for the round jet. The figures include 
predictions made with a constant and variable time- 
scale ratio, the latter being determined via the solution 
of the transport equation for the thermal dissipation 
rate. 

4.1.1. Plane jet. The calculated spreading rate 
dd,/dx = 0.1 agrees fairly well with the range of 
experimental values reported by Rodi [29], i.e. 
da,/& = 0.1-0.11. The thermal spreading rate d&/dx 
is predicted at 0.13, which is somewhat lower than the 
experimenta! value of 0.14 recommended by Chen and 
Rodi [30], but in excellent agreement with the value 
of 0.128 recommended in the more recent review of 
Gouldin et al. [31]. 

Figure 1 reveals that the calculated mean velocity 
and shear stress profiles show good agreement with 
the plane-jet data [271, but as noted in earlier studies 
[13], the normal stress profiles are less satisfactorily 
predicted. However, there are considerable differences 
between the two sets of data [27,28] for the normal 
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FIG. I. Plane free jet: similarity profiles of mean velocity and Reynolds stresses. Data of: Bradbury (271, 
0 ; Gutmark and Wygnanski [28], 0. Predictions, -. 

stresses. The distribution of the mean temperature in 
Fig. 2 shows close agreement with the measurements 
[32]. The predicted profile shapes for each of the heat- 
flux components agree reasonably well with the data 
[33], but their magnitudes are overestimated. The fig- 
ure shows, however, that the measured lateral heat 
fluxes are not satisfactory because they are appre- 
ciably below the values required to close the mean 
temperature equation. This appears to be a common 
difficulty with measurements of the heat flux in jets 
and plumes, and the problem has been discussed in 
some detail by List [35]. 

The distribution of the temperature fluctuations 
produced by each closure model agrees fairly well with 

the data [34], except perhaps in the hi_&lg intermittent 
outer region. The predictions obtained with the con- 
stant time-scale ratio are marginally better than those 
obtained via the solution of an equation for the ther- 
mal dissipation rate. From Fig. 2, it can also be seen 
that the predicted time-scale ratio varies across the 
flow, increasing gradually towards the free stream 
with an average value of about 0.5 in the bulk of the 
flow. This increase in R is in qualitative agreement 
with the experimental behaviour reported by Antonia 

[361. 
4.1.2. Round jet. The predicted spreading rate 

db,/d.r = 0.103, representing an increase of 20% over 
the value of 0.086 supported by experiments [29]. This 
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FIG. 2. Plane free jet : similarity profiles of mean temperature, turbulent heat fluxes, temperature fluctuations 
and time-scale ratio. Data of: Van der Hegge Zijnen [32], 0 ; Ramaprian and Chandrasekhara [33], 0 ; 

Bashir and Ubexoi (341, A. Predictions, -. Predictions (R = 0.56), ---. 

result represents a significant improvement over the 
values of 0.121 and 0.14 obtained with the two press- 
ure-strain models proposed by Launder et al. [S]. 
The problem of predicting the spreading rates of plane 
and round jets with the same model is well known, 
and the anomaly is usually attributed to deficiencies 
in the modelled mechanical dissipation-rate equation 
(20). The thermal growth rate d&/dx is predicted at 
0.138, which is 25% higher than the value of 0.11 
recommended by Chen and Rodi [30]. This dis- 
crepancy is due mainly to the inability of the model 
to obtain the correct velocity spreading rate. 

Figure 3 shows that the calculated profile of mean 
velocity is in excellent agreement with the measured 
profile [29]. The predictions for the radial shear stress 
overestimate the measurements (291, which is consistent 
with the overprediction of the rate of spread. The 
agreement between the measured and calculated tur- 
bulent normal stresses is somewhat unsatisfactory, 
in that the Reynolds stress model underpredicts the 
measured values [29] in the core of the jet. 

Turning to the thermal profiles shown in Fig. 4, 
it can be seen that the mean temperature protile is 
predicted satisfactorily, but the turbulent heat flux 
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Y/6” 

FIG. 3. Round free jet : similarity profiles of mean velocity and Reynolds stresses. Data of Rodi [29], 0. 
Predictions, -. 

levels predicted by the model are largely in error. 
However, the experimental (371 radial heat fluxes cor- 
respond to a measuring station of x/d = 15, and there- 
fore, they are not strictly similarity profiles because the 
turbulence becomes self-similar further downstream. 
Consequently, the measured heat fluxes are probably 
too low to be representative of a self-similar jet. In 
fact, the figure shows that the predicted distribution 
of 2 is much closer to the distribution determined 
from the mean velocity and mean temperature 
measurements [30]. The measured [38] axial heat flux 
levels are actually for a round jet in a co-flowing 
stream, and they are almost certainly too high for a 
jet in stagnant surroundings. For example, the tur- 
bulence levels reported by Antonia et al. [38] for other 
quantities are almost twice those reported by other 

experimenters for jets issuing into stagnant sur- 
roundings. For self-similar round jets, similarly pro- 
files of 2 and 2 are not available. 

Figure 4 also shows reasonable agreement between 
the predicted and measured [39] temperature fluc- 
tuations, with the constant time-scale closure yielding 
somewhat better predictions over the outer part of the 
flow. The computed variation of the time-scale ratio 
shown in Fig. 4 is broadly similar to that obtained for 
the plane jet, showing an average value of about 0.5 
in the core of the jet. 

4.2. Self-similar turbulent plumes 
Turning now to buoyant flows, the cases considered 

are vertical turbulent plane and round plumes gen- 
erated from a source of buoyancy with negligible 
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FIG. 4. Round free. jet : similarity profiles of mean temperature, turbulent heat fluxes, temperature fluc- 
tuations and time-scale ratio. Data of: Chen and Rodi [30], 0 ; Chevray and Tutu [371, l ; Antonia er 

al. [38], A ; Becker er al. [39], 0. Predictions, -. Predictions (R = 0.56), ---. 

momentum. Comparisons of the calculated and mea- 
sured similarity protiles of both mean-flow and tur- 
bulent quantities are given in Figs. 5-g. Calculated 
results are shown for both constant and variable time- 
scale ratios. The results for the plane plume are dis- 
played in Figs. 5 and 6, while Figs. 7 and 8 present 
results for the round plume. 

4.2.1. Plane plume. Calculations of plane plumes 
with ck = cIe (see equation (20)) proved unsat- 
isfactory as the computed spreading rates of 
d&,/dx = 0.081 and da,/& = 0.089 were fully 20% 
lower than those of experiments [33]. Here, it is noted 
that Haroutunian and Launder [8] reported similar 

discrepancies, even when terms involving streamwise 
gradients (neglected in this work) were included. 
Liauw [21] obtained satisfactory predictions by taking 
c,, to be unity, and this is confirmed here because the 
measured spreading rate of 0.104 is reproduced with 
cr, = 0.98 (70% of its original value). The predicted 
value of d&/dx is 0.111, which is in excellent agree- 
ment with the experimental value [33] of 0.11. The use 
of a constant time-scale ratio of 0.56 yields the almost 
identical spreading rates of dd,/dx = 0.105 and 
d?i,/dx = 0.113. 

The cross-stream profiles of mean velocity and tur- 
bulent stresses are compared with experiment [33] in 



2256 M. R. MALIN and B. A. YOLWLS 

FIG. 5. Plane free plume : similarity protiles of mean velocity and Reynolds stresses. Data of Ramaprian 
and Chandrasekhara [33], 0. Predictions, -. Predictions (R = 0.56), ---. 

Fig. 5. It can be seen that the differences between the 
variable and constant time-scale-ratio computations 
are small. The predicted lateral variations of the mean 
velocity and shear stress show good agreement with 
the data. The normal stresses are also reasonably well 
predicted, though the data on 7 suggest somewhat 
lower turbulence levels. It should be noted that 7 has 
been inferred from the data on 7 and z. A com- 
parison between the results for the plume and non- 
buoyant jet reveals that there is a general increase in 
the relative turbulence levels due to the influence of 
buoyancy. This trend is in agreement with the exper- 
imental findings. 

Turning to the thermal results, Fig. 6 reveals that 

the agreement of the mean temperature profile is good, 
and it is noted here that the predictions are superior 
to those obtained from calculations with the old set 
of model coefficients proposed by Gibson and Laun- 
der [7], for which d&/ti = 0.104 and dd,/dx = 0.119. 
From the same figure, it can be seen that the model 
predictions for the levels of the turbulent heat 5uxes 
are much higher than those measured. The predicted 
magnitudes of z are considerably higher than those 
obtained by direct measurement 1331, but as the figure 
shows, the data do not close the mean temperature 
equation. In fact, the predictions show close agree- 
ment with the levels of 2 deduced from the mean-flow 
measurements. The model indicates that the overall 
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FIG. 6. Plane free plume: similarity profiles of mean temperature, turbulent heat fluxes, temperature 
fluctuations and time-scale ratio. Data of Ramaprian and Chandrasekhara [33], 0. Predictions, -. 

Predictions (R = 0.56), ---. 

contribution? to the total vertical heat flux is about 
lo%, which is close to the experimental [33] range of 
l&12%. Of course, the present calculations neglect 
the presence of this correlation in the mean tem- 
perature equation. Comparison of Fig. 6 with Fig. 2 
reveals that the heat-flux profiles for the jet and plume 
are similar in shape, but the influence of buoyancy is 
to increase the relative turbulence levels considerably. 

Attention is now turned to the predicted and mea- 
sured temperature-fluctuation profiles shown in Fig. 
6. The computations with a time-scale ratio of 0.56 
produce intensities that are in good agreement with 
the data [33], and so the model predicts that the rela- 

tive intensity is much higher in the plume than in the 
jet. This trend is in agreement with the experimental 
findings, as may be seen by comparing Fig. 6 with Fig. 
2. On the other hand, the predictions of the tem- 
perature-fluctuation intensities obtained from the E, 
transport equation are about 35% too low in the core 
of the plume. This result follows from a decrease in 
the average value of R to about 0.36 (see Fig. 6), 
which may be explained by an increase in the thermal 
dissipation rate due to unstable stratification. The 
remainder of the thermal predictions, however, show 
very little sensitivity to this change in R, except that 
there is a noticeable reduction in ? because of the 
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FIG. 7. Round free plume: similarity profiles of mean velocity and Reynolds stresses. Data of: George et 
al. [40], 0, 0 ; Beuther et al. [41], 0. Predictions, -. Predictions (R = 0.56). ---. 

buoyancy source (15) appearing in the transport equa- 
tion for this correlation. 

Both closure models for ar predict an integrated flux 
Richardson number, -t&/P,, of -0.25, whereas 
Ramaprian and Chandrasekhara [33] reported a 
measured value of about -0.15. Thus, in the calcu- 
lations, the buoyancy contribution amounts to about 
20% of the total production of the turbulent kinetic 
energy. 

4.2.2. Roundplume. For calculations with a variable 
time-scale ratio, the model predicts spreading rates of 
db,,/dx = 0.139 and d&U_x = 0.146. The correspond- 
ing results for a constant value of R are very similar 

with d&/d.x = 0.143 and d&/d-x = 0.15. These values 
are substantially larger than the respective values 
of 0.112 and 0.104 measured by George et al. [40]. 
This discrepancy of about 25% in dSJdx may be 
attributed to the round-jet spreading-rate anomaly 
referred to earlier, which is obviously carried over 
to the buoyancy~~n phune. However, the dis- 
agreement about d&,/dx seems not to arise solely from 
this quarter, because the model does not predict the 
correct relative behaviour of the velocity and tem- 
perature spreading. This discrepancy is also evident 
in the stress-transport predictions of Haroutuman and 
Launder [8], but not in the algebraic stress closure of 
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ATT/A$ 

0.5 

FIG. 8. Round free plume: similarity protiles of mean temperature, turbulent heat fluxes, temperature 
fluctuations and time-scale ratio. Data of: George et al. [40]. 0 ; Beuther et 01. [41], 0. Predictions, -. 

Predictions (R = 0.56), ---. 

Hossain and Rodi [2]. This suggests that there 
is insufhcient radial diffusive transport of g in the 
differential stress model, but it should also be noted 
that the algebraic closure has the advantage that it 
employs empirical corrections to predict correctly the 
radial transport of streamwise momentum. 

For the present turbulence model, nearly equal 
spreading of the velocity and temperature fields 
(d&/dx = 0.139 and da,/dx = 0.141) can be obtained 
by increasing the coefficient c, from 0.15 to 0.2, so as 
to enhance the radial diffusive transport of Z; this 
has the effect of decreasing ?, and hence the thermal 
spreading rate. While this practice leads to only mar- 

ginal reductions in the thermal spreading rates (2% 
maximum) of the other test cases, it unfortunately 
results in a less satisfaktory prediction of the shape of 
the 2 profile towards the edge of the round plume. 

Figure 7 shows that the similarity profiles of the 
mean velocity are in very good agreement with the 
measurements [40]. The same figure reveals that the 
computed normal stress levels are in fairly good accord 
with the data [40,41] close to the axis of the plume, 
but elsewhere the model tends to over-predict the tur- 
bulence levels. The computed shearing stresses are 
also too high, which is consistent with the over- 
estimation of the plume spreading rate. The results 
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also show that the variation in R brought about by 
solving for E(, leads to a more marked reduction in 
turbulence levels than was found for the plane plume 
(see Fig. 5). However, the differences between the two 
sets of normal-stress predictions are not dramatic. It 
should be mentioned that the data on 7 were esti- 
mated by assuming 7 = 7. 

As may be seen from Fig. 8, the predicted tem- 
perature profile is somewhat wider than the measured 
one [40]. This defect is reflected in the overprediction 
of d&/dx noted earlier, and is a consequence of the 
poor predictions of 2 due mainly to the over- 
prediction of turbulence levels discussed above. Fig- 
ure 8 also shows that the distributions of the mean 
temperature and radial heat flux are scarcely altered 
by the change in closure mode1 for .a,. However, it can 
be seen that the use of a variable time-scale ratio 
produces a large effect on the magnitudes of ?r and 
2, and the effect is much more pronounced than for 
the plane plume. The calculations with a constant 
time-scale ratio overpredict the level of temperature- 
fluctuation intensity by about 50%, whilst distinctly 
better levels of? are found by solving the transport 
equation for a,. The improved predictions result from 
the strong reduction in R, which as may be seen in 
Fig. 8, decreases to an average value of about 0.34. 
The predictions of? are also improved because a fall 
in the temperature fluctuations causes a reduction in 
the generation rate of? by buoyancy forces. 

Both sets of predictions indicate that 20% of the 
total vertical heat flux is borne by the turbulence. This 
contribution is 5% higher than the experimental value 
reported by George et al. [40], and indicates that a 
significant fraction of the total energy flux is provided 
by the high correlation between temperature and 
vertical velocity fluctuations. The integrated flux 
Richardson number is predicted at -0.44 which 
indicates that the buoyancy contribution amounts to 
about 30% of the total production rate of turbulent 
kinetic energy. 

4.3. Forced turbulent plumes 
In the foregoing sections, the limiting cases ofjet and 

plume flows were predicted. In this section, the general 
situation of the forced plume is considered where there 
are present both initial momentum and buoyancy. 
Under certain conditions the flow may behave first 
like a pure jet and then show a gradual transition to 
behave like a pure plume in the far field [30]. For 
both plane and axisymmetric cases, calculations are 
performed for densimetric source Froude numbers of 
1, 5, 50, 500 and 1000. In each case, the marching 
integration is carried out until the flow finally behaves 
like a pure plume. Uniform inlet conditions are chosen 
for each case so as to define the appropriate Froude 
number, FD = p0 U:/(gdAp,). Here ApO is the density 
defect at the source, d the source dimension, and sub- 
script 0 denotes a source condition. 

The results are presented in terms of dimensionless 
plots of centre-line values of flow variables against 

vertical distance from the source. The data and pre- 
dictions are plotted in Figs. 9 and 10 according to the 
scaling law of Chen and Rodi [30]. Figure 9 compares 
the predicted and experimental decay of the centre- 
tine values of the velocity, density defect, vertical tur- 
bulent intensity, turbulent temperature intensity, and 
vertical turbulent heat flux. The corresponding results 
for axisymmetric forced plumes are given in Fig. 10. 
The experimental data in these figures are taken from 
the compilations of Chen and Rodi [30], Malin [3,42] 
and Ogino et al. [43]. Both figures show the demar- 
cation of the jet, transition and plume regions deter- 
mined by Chen and Rodi [30] from their analysis of 
the experimental data. Calculations were made with 
both closure models for E,, but the plotted results were 
significantly different only for ? and 2. Therefore, 
both sets of predictions are shown only for these quan- 
tities, and for the remaining variables, results are given 
only for calculations made with a variable time-scale 
ratio. 

4.3.1. Decay of mean quantities. For both planar 
and axisymmetric cases, Figs. 9 and 10 show that all 
the predictions eventually converge into a single curve 
beyond the zone of flow establishment. The cal- 
culations for F, = 1000 cover the full range between 
pure jet and pure plume. A gradual change from jetlike 
to plumelike behaviour is observed, which agrees 
closely with the experimental data. Within the jet and 
plume regions respectively, similarity theory dictates 
that the centre-line velocity should decay as ~-(‘+j)‘~ 
and x-ji3, and the density defect as ~-(‘+j)~* and 
~-(a+~)‘~. For both plane and round cases, the pre- 
dictions verify these similarity decay laws, and the 
calculated demarcation of the three regions of the 
forced plume are in agreement with experiment. 

4.3.2. Decay of turbulent quantities. From the axial 
plots of dimensionless turbulent quantities given in 
Figs. 9 and 10, it can be seen that for both plane and 
axisymmetric geometries, the predictions obtained for 
each source Froude number all merge into a single 
curve when the flow becomes established. These fig- 
ures also reveal that the predicted decay behaviour 
agrees with gradients representing the similarity decay 
laws for the plume regions. The agreement with exper- 
iment about the vertical velocity fluctuations is very 
good for planar cases, but not surprisingly the inten- 
sities are overpredicted for axisymmetric forced 
plumes. It may be recalled that the mode1 overpredicts 
the intensity of the vertical fluctuations for the limiting 
case of the self-similar round plume. Figures 9 and 10 
show that of the two sets of predictions for the centre- 
line values of 2 and 7, the calculations with a con- 
stant time-scale ratio tend to produce the best agree- 
ment with experiment. 

5. CONCLUSIONS 

The present study has demonstrated that the main 
features of vertical plane and round turbulent jets and 
plumes are predicted with reasonable accuracy by a 
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FIG. 9. Plane forced plume : experimental and predicted decay of centre-line mean and turbulent quantities. 
Symbols are data taken from Malin [42] and Chen and Rodi [30]. Predictions, -. Predictions 
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revised Reynolds stress and heat flux transport old set of model coefficients proposed by Gibson and 
closure. The main findings of the work are listed Launder [7j, although the velocity spreading rate is 
below. still about 20% greater than experiment. The plane 

jet case is predicted fairly well by the model. 
(a) Solutions to the self-similar round jet show sub- (b) Calculations of plane plumes with c3, = cl8 dis- 

stantially better predictions than achieved with the play rates of spread that are 20% lower than exper- 
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iment, but good agreement with the measured behav- model to predict correctly the growth rate of the 
iour can be obtained by reducing the model coefficient axisymmetric jet. 
c3, to 70% of its original value. (d) For jet flows, the modelled transport equation 

(c) The predictions of axisymmeric plumes are less for E, predicts broadly the correct levels of fluctuating 
satisfactory than the plane cases, mainly because of temperature, but the predictions are no better than 
the shortcomings associated with the failure of the those obtained with a constant time-scale ratio. The 
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transport model also predicts correctly that the time- 
scale ratio decreases under the influence of buoyancy, 
and this feature leads to improved predictions of ?r 
for the round plume. However, the model under- 
estimates the level of temperature fluctuations for 
plane plumes, and better results are obtained with a 
constant time-scale ratio. 

(e) The Reynolds stress and heat flux transport 
model is capable of reproducing with reasonable accu- 
racy the main features of turbulent forced plumes, 
where the flow undergoes a gradual transition from 
jetlike to plumelike behaviour. 

The work presented in this paper forms part of an 
ongoing program of research concerned with the 
development of a Reynolds-stress/flux turbulence 
closure model for predicting practical buoyancy flows. 
In future work, attention will be focused on applying 
the model to both bounded and stratified buoyant 
flows. It is intended that further refinement to the 
model should concentrate on the closure approxi- 
mations employed for the heat-flux and dissipation- 
rate equations. 
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CALCUL DES PANACHES TURBULENTS AVEC FERMETURE PAR LES TENSIONS 
DE REYNOLDS ET LES FLUX DE CHALEUR 

R&utm&Gn adopte une fermetute differentielle des tensions de Reynolds et des flux de chaleur pour 
mod&er la convection de chaleur et de quantitt de mouvement dans des panaches libres verticaux. Les 
equations sont t&olues pour les tensions et les flux thermiques. la dissipation de I’hergie turbulente et les 
moyemtes quadratiques des fluctuations de temperature. La fermeture permet de traiter les mecanismes de 
transport turbulent de fa9on plus exacte que par les mod&s a deux equations de type Boussinesq qui sont 
bases sur la notion dune viscosite et dune diffusivite effective. Le modble est applique au calcul des 
panaches self-similaires et des panaches forces. Les rhultats sont compares aux don&es ex+rimentales et 

ils sont en accord raisonnable avec les observations. 

BERECHNUNG TURBULENTER AUFTRIEBSFAHNEN 

Zusammenfassung-Der turbulente Energie- und Impulstransport in senkrechten freien Auftriebsfahnen 
wird mit Hilfe einer differentiellen SchheBbedingung fur Reynolds’sche Schubspannung und WLrmestrom 
modelliert. Die Transportgieichungen werden fib turbulente Schubspannungen und WiirmestrBme, die 
Dissipationsrate der Turbulenxenergie und die mittleren quadratischen Temperaturschwankungen gel&t. 
Eine SchlieBbedingung an dieser Stelle erlaubt eine exaktere Berechnung der turbulenten Transport- 
vorgiinge als bei Zwei-Gleichungs-Modellen nach Boussinesq, welche auf der Einfiihrung von Effektiv- 
werten Wr Viskositit und Diffusivitiit beruhen. AuBerdem wird die Losung einer Transportgleichung 
fib die therm&he Dissipation untersucht, welche ohne eine empirische Beschreibung des Verh~ltnisses 
der therm&hen und mechanischen ZeitmaDstiibe auskommt. Das Model1 wird Eir die Berechnung von 
selbstiihnlichen Auftriebsfahnen und erzwungenen Auftriebsfahnen angewandt. Die Ergebnisse werden 

mit vorhandenen Versuchsdaten verglichen, wobci sich eine brauchbare &xeinstimmung ergibt. 

PACYET TYPEYJIEHTHbIX BOCXO~IQPIX CBO60J.(HOKOHBEKTHBHbX TESEHWR C 
3AMbIKAHHEM YPABHEHHft WTEM YYETA PE~HOJIbJ&OBCKHX HAlTPJDKEHHft 

U llEPEHOCA TJZLJIOBOI-0 l-IOTOKA 

*~~inie c lIOMOu5io lutl#&WEWianbaw peikHoJ5ncollcrnx w-e& u TeMOBbIX 
t’lOTOKOB E@XOJlbsyeXn ttpE MOAe.nEpoMUEll Typ6yneHTHOrO tlepeEOca TcMa It EMtlynaCa B v 
mrx cs06omtorortnernt~aba t#taliuw. Ho~esmbte ypamtesrms neperioca pemamrcr lLRn ryp6ynerir- 
ttbtx HanparCti Ii TettJtOBbU UoToCOB, cKOpocT’#t Jtr%cCanat.tmt 3tieprmi Typ6yxCtrl’B~ Ii 
cpuuletBaapaTwaaa nynbca&t rewrypbt. HcttonbsyeMar npouexypa 3BMbD(BBpu tto3aonner 
6onee TO’tEO BccIIcLIOBtITb npOtteU%t Typ6ynCItYstOrO ttgrroca. ‘#CM nByMapaM~e MOAeJm 
lmra sycomlecq ocuoaatttmte tia ttosurnn! 3l$#XTEBHOti Bft3XOClll E lzhaepBTypO~BOJ.IEOcrE. 

Taste npomen 888rm3 pemeaar ypai~kmn nepemxa nnn nxkxr~oBp~~ B roropo~ ne rpe- 
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